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Any suggestions, questions and remarks are welcome!

A little extra Linear Algebra

. Show that any set of non-zero polynomials in F[x ], no two of which have same degree, is linearly

independent over F.

Suppose that V is a vector space with dimension > 2. Show that V has more than one basis.

. Suppose that K,L,M article subspaces of a vector spaces V. Show that KN (L + (K NM) =

(KNL)+(KnM).

Suppose M and N are subspaces of a vector space V. Show that (M + N)/N =M /(M NN).

. Let V be a vector space over an infinite field F. Show that V cannot be the union of finitely many

proper subspaces of V.

. Suppose that V is a finite dimensional vector space over F. Suppose TS = ST for every endo-

morphism S on V. Show that T = xI, for some scalar x.

Suppose that T is a linear functional on V. Show that (Im T*)* = ker T and that ker T* =Im T'.
Hence show that if V and W are finite dimensional vector spaces over F, and T : V — W is a
linear transformation, then rank T = rank T*.

. Suppose that V is a vector space and that S = {fy,..., f,} € V*, Show §* = ﬂ?zl ker f;.

Suppose that F is a finite field. Let V be a vector space over F of dimension n. Show that for
every m < n, the number of subspaces of V of dimension m is exactly the same as the number of
subspaces of V of dimension n —m.

Suppose that vq,...,V, are distinct non-zero vectors in a vector space V. Show that there is
T € V* such that T(v;) # O for any i.

Suppose V = M @ N, where M and N are subspaces of the vector space V. Show that V* =
NteM*t.

(Oddtown) There are n inhabitants of Oddtown numbered 1,...,n. They are allowed to form
clubs according to the following rules:

(a) Each club has an odd number of members.

(b) Each pair of clubs share an even number of members.

Show that the number of clubs formed cannot exceed n. Hint: Associate each club with a vector
in Z%.
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13. (From A Walk Through Combinatorics - Bona) The set A consists of n + 1 positive integers, none
of which has a prime divisor that is larger than the nth smallest prime number. Prove that there
exists a non-empty subset B C A so that the product of the elements of B is a perfect square.

Definition (Eigenvector). A non-zero vector v € V is said to be an eigenvector for T : V — V if span
v is T—invariant.

Definition (Eigenvalue). If T(v) = Av, we say A is the eigenvalue for T corresponding to v.

Definition (Eigenspace). For a given map T : V — V and a scalar A € I, we define the eigenspace
V, to be
Vy={veV:Tv=2Av}.

That is, V; is the set of eigenvectors for T corresponding to A.
Exercise 1.1. Show that V, is a subspace of V.

Definition (Geometric Multiplicity). For a given A € F and V, as above, dim V;, is called the geometric
multiplicity of A.
Exercise 1.2. Think of rotation by 90° as linear map on R?. What are the eigenvectors?

Exercise 1.3. Suppose v is an eigenvector for T with eigenvalue A and suppose f is an automorphism
on V. Can you find an eigenvector for f o T o f~1?

Exercise 1.4. Suppose B = {v,...,v,} is a basis for V and that each v; is an eigenvector for a linear
transformation T : V — V such that v; corresponds to the eigenvalue A;. What will the matrix
representation of T with respect to B look like?

Exercise 1.5. Show that 0 is an eigenvalue for a linear transformation T on V iff T is not injective.

Exercise 1.6. Suppose ¢, are linear transformations on V. Show that ¢ ot and 1 o ¢ have exactly
the same eigenvalues.

Exercise 1.7. Suppose vy, ..., v, are different non-zero vectors for some linear transformation T on V
corresponding to distinct eigenvalues A4,...,A,. Show that the vy,...,v, are linearly independent.
2 Groups

Definition (Group). A nonempty set G is said to form a group if there is an associated binary oper-
ation (which we will denote by o) such that

1. (Closure) If a,b € G, thenaob €G.
2. (Associativity) If a, b,c € G, then (aob)oc €G.

3. (Existence of Identity) There is an element e € G such that ace = e o a = a for every a € G.

4. (Existence of Inverses) For every a € G there is an element a~! € G such thataoa™! =a loa =e.
If, in addition, the group satisfies the condition that for every a,b € G, ao b = b o a, then we
call the group an abelian group.

Exercise 2.1. Show that the identity in a group is unique. Show also that each g € G has a unique
inverse and so we can talk about "the" identity and "the" inverse of g.

Exercise 2.2. Show that for each pair a, b € G, there is a unique element x € G such thataox = b
and a unique y € G such that y oa = b. This means that the "equations" aox = b and yoa=5»>
have unique solutions.
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Exercise 2.3. Suppose that H is a nonempty set with an associative operation (which we will denote
by %) and an identity element e. Suppose that every element h € H has a left inverse h’ such that
h’ xh = e. Show that (H, %) is a group.

By showing this, you are showing that the axioms for a group are stronger than necessary.

Exercise 2.4. For an arbitrary element in a group, show that k™1 o g=! = (goh)™1.
Example 2.5. Let X be a nonempty set and let L(X) be the set of all bijections from X to itself. Then

L(X) is a group under the operation of composition of functions. If X is finite, what is |L(X)|?

Definition. Suppose that (G, o) is a group. Suppose that H and K are subsets of G. Then define HK
tobe theset {hok:he€ H, k€ K}.
Similarly, we can define gH and Kg for g € G to be {gh: h € H} and {kg : k € K} respectively.

Definition. Suppose G = (G, o) is a group. Suppose H is a nonempty subset of G which is closed
under o. Suppose that the following also hold.

1. HoH CH.
2. IfheH, thenh ! eH.
Then we say H is a subgroup of G.

Exercise 2.6. Suppose that for every i € I, H; is a subgroup of a group G. Show that
[
i€l

is a subgroup of G.

Do you remember an analogous theorem for subspaces? You will see many similarities with
subspaces and subgroups because a Vector space is really an abelian group with respect to addition.

Exercise 2.7. Note that (Z,+) is a group. Show that every subgroup of Z under + is of the form
nZ = {ngz :z € Z} where n € Z.

Definition (Cosets). Suppose that H is a subgroup of G and g € G. Then gH as defined above is
called the left coset of g with respect to H. We can analogously define Hg, the right coset of g with
respect to H.

Exercise 2.8. Suppose that G is a group and that N is a subgroup of G. Let ~ be a relation on a group
G such that g ~ h iff h € gN. Show that this is an equivalence relation on G.

We denote G/~ = {gN : g € G} by G/N.
Exercise 2.9. Consider the group (Z,+). Suppose n € Z*. What is Z/nZ?

Definition (Normal Subgroup). A subgroup N of a group G is called a normal subgroup of G if
gN = Ng for every g € G. We call gN the coset of g modulo N.

That is, the left and right cosets are the same. Every subgroup in an abelian group is clearly
normal, but normal subgroups are possible in non-abelian groups as well.

Exercise 2.10. Suppose that N is a normal subgroup of a group G and g,h € G. Show that (gN)(hN) =
(g oh)N where (gN)(hN) denotes the product of the sets gN and hN as defined above.

This shows that normal subgroups respect products, and this allows for a lot of interesting prop-
erties.

Exercise 2.11. Suppose that G is a group and N is a normal subgroup of N. Let [g] denote gN, the
coset of g modulo N. Let x : G/N — G/N be defined by [g]*[h] =[g oh]. Show that (G/N, ) is a
group. What is the identity? What is the inverse of [g]?
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Definition (Group Homomorphism). Suppose (G, o) and (G’, o) are groups. A function ¢ : G —» G’
is called a group homomorphism if for every g,h € G we have

p(goh)=¢(g)o ¢(h).
A homomorphism from G to itself is called an endomorphism.

Definition. Suppose ¢ : G — G’ is a group homomorphism. The kernel of ¢, denoted by ker ¢, is
the set {g € G : p(g)=¢'} = ¢ 1(e).

Exercise 2.12. Suppose e and e’ are the identity elements of G and G’ respectively. Show that ¢ (e) =
e’. Suppose g € G. What is ¢ (g 1)?

Exercise 2.13. Suppose ¢ : G — G’ is a group homomorphism. Show that ker ¢ is a normal subgroup
of G.

Exercise 2.14. Suppose N is a normal subgroup of a group G. Show that there is some group homo-
morphism for which N is the kernel.

Exercise 2.15. Suppose ¢ : G — G’ is a group homomorphism. Let N = ker ¢. Then, for g € G,
show that gN = Ng = ¢ (¢ (g)).
Exercise 2.16. Show that a homomorphism ¢ : G — G’ is injective iff ker ¢ = {e}.

Exercise 2.17. Suppose N is a normal subgroup of G. Show that the quotient function ¢ : G —» G/N
is a surjective homomorphism. What is ker 1?

Definition. A bijective homomorphism ¢ : G — G’ is called an isomorphism. In this case we say
that G and G’ are isomorphic and write G = G’. An isomorphism from a group to itself is called an
automorphism.

Isomorphic groups are essentially identical. In fact, the relation = on a set of groups is an
equivalence relation.

Exercise 2.18. Suppose that ¢ : G — G’ is an isomorphism. Show that ¢~! is an isomorphism as
well.

Exercise 2.19. Suppose that G is a group and that g € G. Then the map ¢ : G — G defined by
¢(x) = gxg~! is an automorphism.
Exercise 2.20. Let ¢ : G — G’ be a homomorphism. Is Im ¢ a normal subgroup of G'?

Exercise 2.21. Show that the image of a normal subgroup N of a group G under a surjective homo-
morphism ¢ : G — G’ is a normal subgroup of G’. What happens if ¢ is not surjective?

Exercise 2.22 (First Isomorphism Theorem). Let ¢ : G —» G’ be a homomorthism and that 1 is the
quotient function ¢ : G — G/ ker ¢. Then there is a unique isomorphism ¢ : G/ ker ¢ — Im ¢
such that ¢ = ¢ o). Hence G/ ker ¢ =Im¢.

Definition. The order of a group (G, o) is |G| and is denoted by o(G). This is only relevant when G
is finite.

Exercise 2.23. Show that there is a bijection between the (left) right cosets formed by a subgroup H
of a group G.

Exercise 2.24. (Lagrange’s Theorem) Suppose that G is a group having finite order and that H is a
subgroup of G. Show that H also has finite order and that o(H) | o(G).
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3 Algebras over a Field

Definition (Algebra over a Field). An algebra over a field F (sometimes called an F-algebra) is a
vector space V over IF which also has a binary operation * (which we call "multiplication" or a bilinear
product) such that for all @i, V,w € V we have

<l

Lu-(V+w)=a-v+i-w,
+w-1,

3}
Sy

2. V+w)-u=v-
3. and, V- (aw) = a(V - w) = (aV) - w for any scalar a.
We say that an algebra has a unit element if there is a T € V such that 1% = 31 = 7.

Note that any field is an algebra over itself, but every algebra need not be a field because there
may be non-invertible non-zero elements in the algebra.

Definition. Suppose that V is a vector space over a field F. Let End(V) denote the set of endomor-
phisms on V. Remember that End(V) is a vector space over F.

Let’s make End(V) into an algebra. For f,g € End(V) define fg to be h € End(V) where
h(v) = f(g(v)). Thatis f g = f o g, where o represents the usual operation of composition.
Exercise 3.1. Show that End(V) is really an algebra with the multiplication defined above. Is there

a unit element?

Definition (Units). Suppose that A is an algebra with a unit element 1. Then define an element
a € Ato be a unit if there is a b € A such that ab = ba = 1. That is, a unit is an invertible element
in A.

Exercise 3.2. Suppose A is an algebra over a field F. Suppose the multiplication on A is associative
(we call it an associative algebra). Show that U, the set of all the units in A, is a group under
multiplication.

In the case of End(V), this group is denoted by GL(V) and called the general linear group over
V. GL(n,R) (or GL,(F) in general) is the set of invertible n x n matrices with elements in R. Do
you see why GL(n,R) is a group?

Exercise 3.3. What is the order of GL,(Z/pZ) when p is prime?
Exercise 3.4. Show that the units in End(V) are precisely the automorphisms on V.

Exercise 3.5. Suppose A is an algebra over F and v € A. Define ¢, : A— Aby ¢,(v) = aov for any
v € A. Show that ¢, is an endomorphism on A. Similarly show that ¢, : A—> Aby ¢Y,(v) =voais
an endomorphism as well.

Thus the multiplication in an algebra is a special type of an operation called a bilinear map. Can
you guess why it is called that?

Exercise 3.6. Suppose V and W are vector spaces and ¢ : End(V) — End(V’) is an isomorphism.
(a) Suppose that V and V' are finite dimensional. Show that V £ V’.
(b) Now remove the assumption that V or V' is finite dimensional. Show that V £ V’.

Definition (Division Algebra). An algebra A with a unit 1 is called a division algebra if A\ {0} is a
group under multiplication. That is, in a division algebra every non-zero element is a unit.

Exercise 3.7. Show that a finite dimensional algebra A with unity is a division algebra iff it has no
zero divisors.



3 ALGEBRAS OVER A FIELD

Let’s talk about quaternions. They came about as William Rowan Hamilton’s failed efforts to form
a three dimensional number system (the real numbers are a one dimensional number system and the
complex numbers are a two dimensional number system). He instead discovered the Quaternions,
which is a almost a four dimensional number system because it lacks commutativity.

Definition. Consider H, a four dimensional vector space over R with a basis {1,i,j,k}. That is,
every element h € H can be written uniquely in the form h = al + bi + ¢j + dk for reals a, b, c,d.
Lets make it into an algebra with the following rules of multiplication:

1. 1 oh =h for every h € H;

2. ?=j*=k*=—1;

3.ioj=k,joj=1i,koi=j;

4. joi=—k,koj=—i,iok =—j.
We call this the Quaternion Algebra over R.

Exercise 3.8. Consider the map C : H — H defined by C(a + bi +cj+dk = a—bi—cj—dk. We call
this the "complex conjugation map" and write C(z) = Z for z € H. SHow that 2,2, = 22, for every
%1,%, € H.

Note that we expect this to be true because the quaternions are really meant to be an extension
of the complex numbers.

Exercise 3.9. Suppose z = a + bi +cj + dk € H. Show z -z = a® + b? + ¢ + d2.

Exercise 3.10. Show that every non-zero element in H is invertible. Hence conclude that H is a
division algebra.



